How to read and write JSON files with Spark

I wanted to build a Spark program that would read text file where every line in the file was a Complex JSON object like this. I wanted to parse the file and filter out few records and write output back as file. You can download the project from GitHub

{
   "first":"Sachin",
   "last":"Tendulkar",
   "address":{
      "line1":"1 main street",
      "city":"mumbai",
      "state":"ms",
      "zip":"12345"
   }
}
There are lot of options when it comes to parsing JSON, but i decide to use Jackscon parser as i am comfortable with it. So add the Jackson dependencies in the pom.xml Next i did create Spark Driver program like this, it takes 2 parameters. One is inputFile which is path to input file that contains JSON and other is outputFile which is path to output Folder where the output should be saved. In my code i did define 2 classes Person and Address which are simple beans with json related annotations. Most of the Spark code is similar to what it would look like for dealing with say comma separate file or simple text file. Only difference is line 52 to 60, where i am calling the ObjectMapper.readValue() method to convert the line of input into object of Person class. Now if the JSON is invalid it throws exception like you can see at the bottom of the post. So to deal with it i am catching exception and every time there is exception i am increment errorRecords by one

2015-12-31 07:52:44 ERROR TaskSetManager:75 - Task 0 in stage 0.0 failed 1 times; aborting job
Exception in thread "main" org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 0.0 failed 1 times, most recent failure: Lost task 0.0 in stage 0.0 (TID 0, localhost): com.fasterxml.jackson.databind.JsonMappingException: Unexpected end-of-input: was expecting closing quote for a string value
 at [Source: {"first":"VVS","last":"Laxman" , "address": {"line1":"1 main street", "city":"Hyderabad","state":"AN","zip":"121212}}; line: 1, column: 235] (through reference chain: com.spnotes.spark.Person["address"]->com.spnotes.spark.Address["zip"])
 at com.fasterxml.jackson.databind.JsonMappingException.wrapWithPath(JsonMappingException.java:210)
 at com.fasterxml.jackson.databind.JsonMappingException.wrapWithPath(JsonMappingException.java:177)
 at com.fasterxml.jackson.databind.deser.BeanDeserializerBase.wrapAndThrow(BeanDeserializerBase.java:1474)
 at com.fasterxml.jackson.databind.deser.BeanDeserializer.vanillaDeserialize(BeanDeserializer.java:260)
 at com.fasterxml.jackson.databind.deser.BeanDeserializer.deserialize(BeanDeserializer.java:125)
 at com.fasterxml.jackson.databind.deser.SettableBeanProperty.deserialize(SettableBeanProperty.java:520)
 at com.fasterxml.jackson.databind.deser.impl.FieldProperty.deserializeAndSet(FieldProperty.java:101)
 at com.fasterxml.jackson.databind.deser.BeanDeserializer.vanillaDeserialize(BeanDeserializer.java:258)
 at com.fasterxml.jackson.databind.deser.BeanDeserializer.deserialize(BeanDeserializer.java:125)
 at com.fasterxml.jackson.databind.ObjectMapper._readMapAndClose(ObjectMapper.java:3736)
 at com.fasterxml.jackson.databind.ObjectMapper.readValue(ObjectMapper.java:2726)
 at com.spnotes.spark.NetcatStreamClient$$anonfun$4.apply(NetcatStreamClient.scala:74)
 at com.spnotes.spark.NetcatStreamClient$$anonfun$4.apply(NetcatStreamClient.scala:72)
 at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:396)
 at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:413)
 at scala.collection.Iterator$class.foreach(Iterator.scala:742)
 at scala.collection.AbstractIterator.foreach(Iterator.scala:1194)
 at org.apache.spark.rdd.RDD$$anonfun$foreach$1.apply(RDD.scala:798)
 at org.apache.spark.rdd.RDD$$anonfun$foreach$1.apply(RDD.scala:798)
 at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1498)
 at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1498)
 at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:61)
 at org.apache.spark.scheduler.Task.run(Task.scala:64)
 at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:203)
 at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
 at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
 at java.lang.Thread.run(Thread.java:745)
Caused by: com.fasterxml.jackson.core.JsonParseException: Unexpected end-of-input: was expecting closing quote for a string value
 at [Source: {"first":"VVS","last":"Laxman" , "address": {"line1":"1 main street", "city":"Hyderabad","state":"AN","zip":"121212}}; line: 1, column: 235]
 at com.fasterxml.jackson.core.JsonParser._constructError(JsonParser.java:1581)
 at com.fasterxml.jackson.core.base.ParserMinimalBase._reportError(ParserMinimalBase.java:533)
 at com.fasterxml.jackson.core.base.ParserMinimalBase._reportInvalidEOF(ParserMinimalBase.java:470)
 at com.fasterxml.jackson.core.json.ReaderBasedJsonParser._finishString2(ReaderBasedJsonParser.java:1760)
 at com.fasterxml.jackson.core.json.ReaderBasedJsonParser._finishString(ReaderBasedJsonParser.java:1747)
 at com.fasterxml.jackson.core.json.ReaderBasedJsonParser.getText(ReaderBasedJsonParser.java:233)
 at com.fasterxml.jackson.databind.deser.std.StringDeserializer.deserialize(StringDeserializer.java:32)
 at com.fasterxml.jackson.databind.deser.std.StringDeserializer.deserialize(StringDeserializer.java:11)
 at com.fasterxml.jackson.databind.deser.SettableBeanProperty.deserialize(SettableBeanProperty.java:520)
 at com.fasterxml.jackson.databind.deser.impl.FieldProperty.deserializeAndSet(FieldProperty.java:101)
 at com.fasterxml.jackson.databind.deser.BeanDeserializer.vanillaDeserialize(BeanDeserializer.java:258)
 ... 23 more

Driver stacktrace:
 at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1204)
 at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1193)
 at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1192)
 at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
 at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
 at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1192)
 at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:693)
 at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:693)
 at scala.Option.foreach(Option.scala:257)
 at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:693)
 at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1393)
 at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1354)
 at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)

Process finished with exit code 1

5 comments:

  1. This comment has been removed by the author.

    ReplyDelete
  2. Hi, Have you tried xml proessing the way how we are doing for json? Could you please provide the sample. Consider that i am reading the data which is in xml form from kafka and i ll consume and process it in spark. ( since its a streaming i ll not keep it in any physical path) Thank you.

    ReplyDelete
  3. It was really a nice article and i was really impressed by reading this Big data hadoop online Training India

    ReplyDelete
  4. Very nice blog post. Thanks for sharing such helpful blog post. Keep posting in future also.

    Web Development Company in Bangalore
    Website Development Company in Bangalore

    ReplyDelete